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Abstract

The present study aims at modeling, by means of computational fluid dynamics (CFD) simulations, the thermo-fluid dynamics behavior of a thermocline combined
sensible/latent heat storage. A simplified 2D axisymmetric numerical model was developed and time-dependent CFD simulations were performed. The channeling effect
was accounted for by modeling an exponential decay of the void fraction in the radial direction of the packed bed. The results of the CFD simulation were satisfactorily
validated with experimental data gathered from a pilot-scale thermal energy storage (TES). The CFD simulations were performed with Fluent 15.0 code from ANSYS.

Introduction

The development of reliable and cost-effective TES systems is among the main technical challenges to realize the long-term energy policy (Energy Strategy 2050) developed
by the Federal Council. In the field of high-temperature TES, packed beds with low-cost filler material can be considered as representative solution for sensible heat storage
and even the most suitable for air-based systems such as advanced adiabatic compressed air energy storage (AA-CAES). However, an intrinsic drawback of this solution is
the decrease of the heat transfer fluid (HTF) outlet temperature, towards the end of the discharge phase. This drawback can be avoided if a latent TES, based on phase
change material (PCM), is exploited instead. However, the high cost of the PCM is among the limiting factors on its integration into an AA-CAES plant. For this reason, the
idea of adding a small amount of PCM on top of the packed bed was proposed with the aim of mitigating the HTF temperature decrease during discharging limiting, at the
same time, the increment of the overall TES system cost.

TES prototype

A 42.3 kWh,, combined TES pilot-scale prototype (Fig. 1) has been built and tested. Perforated plate : \
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with the HTF entering the TES from the bottom and leaving it from top.

Fig. 1: Schematic of the pilot-scale combined TES (l.h.s.) and TCs position (r.h.s.).
Void fraction distribution and heat transfer in packed beds
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The packed bed of rocks and the PCM layers were modeled exploiting the porous

media approach under the assumption of local thermal non-equilibrium (LTNE). The
PCM phase transition was modeled as sensible process, i.e. non-explicit phase

Fig. 2: Comparison between CFD simulation results (solid lines) and experimental data (markers).

change tracking, with an increased material heat capacity. Figure 2 shows the my 5250
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Fig. 3: Temperature distribution after the reference charging of: a) 1.67 h; b) 2.22 h; c) 2.78 h.
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