Prof. Dr. Christophe Copéret
ETH Zurich
Lab. für Anorganische Chemie
HCI H 229
Vladimir-Prelog-Weg 1-5/10
8093 Zürich
phone +41 44 633 93 94

We are connected with the Energy Science Center at ETH

With the aim to reduce the CO2 footprint, as proposed and enforced by policy makers in order to reduce the anthropogenic effects on the climate, CO2 hydrogenation towards fuel production is a way to recycle this greenhouse gas and store abundant renewable energy. E.g. Iceland and even regions in Germany have methanation plants in operation for this purpose.
Switzerland has a vast surplus of hydroelectricity on one hand. On the other hand, companies in Switzerland will pay CHF 25 for every ton of carbon dioxide they produce. This is a strong motivation to find ways of fixing carbon dioxide and the anticipated products, e.g. formic acid, methanol and hydrocarbons.
The catalytic and electrocatalytic reduction of CO2 to form either syngas or hydrocarbons are highly challenging processes with respect to catalyst activity and selectivity.

This project will mainly focus on the development of advanced catalysts within the timeframe of this SCCER. In addition, the demonstration the feasibility of the processes on the laboratory scale reactor level (for catalytic CO2 reduction) and on the full cell level (the electrocatalytic CO2 reduction, also called co-electrolysis) with an efficiency of >30% and with a selectivity of >60% for syngas/hydrocarbons is planed.


Molecular Control and Understanding of Surface Chemistry

  • F. Rascon, R. Wischert, C. Copéret, «Molecular nature of support effects in single-site heterogeneous catalysts: silica vs. alumina». Chem. Sci., 2, 1449 (2011).
  • D. Gajan, K. Guillois, P. Delichère, J.-M. Basset, J.-P. Candy, V. Caps, C. Copéret, A. Lesage, L. Emsley, «Gold nanoparticles supported on passivated silica: access to an efficient aerobic epoxidation catalyst and the intrinsic oxidation activity of gold». J. Am. Chem. Soc., 131, 14667 (2009).
  • F. Héroguel, G. Siddiqi, M.D. Detwiler, D.Y. Zemlyanov, O. Safonova, C. Copéret, «Simultaneous generation of mild acidic functionalities and small supported Ir NPs from alumina-supported well-defined iridium siloxide». J. Catal., 321, 81 (2015).
  • M.P. Conley, C. Copéret, C. Thieuleux, «Mesostructured Hybrid Organic-Silica Materials: Ideal supports for well-defined heterogeneous organometallic catalysts». ACS Catalysis, 4, 1458 (2014).
  • A. Lesage, M. Lelli, Moreno; D. Gajan, et al. «Surface Enhanced NMR Spectroscopy by Dynamic Nuclear Polarisation». J. Am. Chem. Soc., 132, 15459 (2010).
  • A.J. Rossini, A. Zagdoun, M. Lelli, A. Lesage, C. Copéret, L. Emsley, «Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy». Acc. Chem. Res., 46, 1942–1951 (2013).
  • P. Wolf, M. Valla, A.J. Rossini, A. Comas-Vives, F. Núñez-Zarur, B. Malaman, A. Lesage, L. Emsley, C. Copéret, I.Hermans, «NMR Signatures of the Active Sites in Sn–beta Zeolite». Angew. Chem. Int. Ed., 53, 10179 (2014).
  • M. Baffert, T. Maishal, L. Mathey, C. Copéret, C. Thieuleux, «Tailored Ru-NHC hybrid catalytic materials for the hydrogenation of CO in the presence of amine». ChemSusChem., 4, 1762 (2011).
  • M. Broda, A. Kierzkowska, D. Baudouin, Q. Imtiaz, C. Copéret, C. Mueller, «Sorbent enhanced methane re- forming over a Ni-Ca-based, bi-functional catalyst sorbent». ACS Catalysis, 2, 1635–1646 (2012).
  • D. Baudouin, K. Chung Szeto, P. Laurent, et al., «Nickel-silicide colloid prepared under mild conditions as a versatile Ni-precursor for more efficient CO reforming of CH catalysts». J. Am. Chem. Soc., 134, 20624 (2012).
  • D. Baudouin, U. Rodemerck, A. de Mallmann, et al., «Particle size effect in the low temperature reforming of methane by carbon dioxide on silica-supported Ni nanoparticles». J. Catal., 297, 27 (2013).

Towards a Mechanistic Understanding of the Electro-Reduction of CO2

  • A. Rudnev, M. Ehrenburg, E. Molodkina, I. Botriakova, A. Danilov, T. Wandlowski, Electrocatalysis, 6, 42–50 (2015).
  • A. Kuzume, U. Zhumaev, J. Li, Y. Fu, M. Fueg, M. Estevez, Z. Borjas, T. Wandlowski, A. Esteve-Nunez, PhysChemPhys, 16, 22229–22236 (2014).
  • T.M.T. Huynh and P. Broekmann, ChemElectroChem, 1(8), 1271–1274 (2014).
  • T.J. Schmidt, «Approaches to overcome catalyst limits in electrochemical energy conversion devices». Materials Science and Engineering Conference 2014, Sept. 23–25, 2014, Darmstadt, Germany.
  • K. Waltar, E. Fabbri, R. Kötz, T.J. Schmidt, «Mechanistic investigations of oxygen evolution catalysts in acidic electrolyte». 10th European Symposium on Electrochemical Engineering, Sept. 28 – Oct. 2, 2014, Sardinia, Italy.
  • T.J. Schmidt, «Electrocatalysis for the future energy system: Fuel cells, electrolysers and more...». Symposium on Advances in Surface Chemistry, Nov. 6, 2014, Ulm University, Germany.
  • T.J. Schmidt, «Electrocatalysis in energy conversion devices: From fundamentals to applications». Symposium on Electrocatalysis, April 4, 2014, Helmholz Institute Erlangen-Nürnberg, Erlangen, Germany.